Critical Point Theorems and Ekeland Type Variational Principle with Applications
نویسندگان
چکیده
We introduce the notion of λ-spaces which is much weaker than cone metric spaces defined by Huang and X. Zhang 2007 . We establish some critical point theorems in the setting of λ-spaces and, in particular, in the setting of complete cone metric spaces. Our results generalize the critical point theorem proposed by Dancs et al. 1983 and the results given by Khanh and Quy 2010 to λ-spaces and cone metric spaces. As applications of our results, we characterize the completeness of λ-space cone metric spaces and quasimetric spaces are special cases of λ-space and studying the Ekeland type variational principle for single variable vector-valued functions as well as for multivalued bifunctions in the setting of cone metric spaces.
منابع مشابه
Minimax Theorems on C1 Manifolds via Ekeland Variational Principle
Let X be a Banach space and Φ : X → R of class C1. We are interested in finding critical points for the restriction of Φ to the manifold M = {u ∈ X : G(u) = 1}, where G : X → R is a C1 function having 1 as a regular value. A point u ∈M is a critical point of the restriction of Φ to M if and only if dΦ(u)|TuM = 0 (see the definition in Section 2). Our purpose is to prove two general minimax prin...
متن کاملSimultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کامل$(varphi_1, varphi_2)$-variational principle
In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm, such that $f + g $ attains its strong minimum on $X. $ This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Ma...
متن کاملA Minimization Theorem in Quasi-metric Spaces and Its Applications
We prove a new minimization theorem in quasi-metric spaces, which improves the results of Takahashi (1993). Further, this theorem is used to generalize Caristi's fixed point theorem and Ekeland's ε-variational principle. 1. Introduction. Caristi [1] proved a fixed point theorem on complete metric spaces which generalizes the Banach contraction principle. Ekeland [3] also obtained a non-convex m...
متن کاملVectorial Form of Ekeland-Type Variational Principle in Locally Convex Spaces and Its Applications
By using a Danes̆’ drop theorem in locally convex spaces we obtain a vectorial form of Ekelandtype variational principle in locally convex spaces. From this theorem, we derive some versions of vectorial Caristi-Kirk’s fixed-point theorem, Takahashi’s nonconvex minimization theorem, and Oettli-Théra’s theorem. Furthermore, we show that these results are equivalent to each other. Also, the existen...
متن کامل